ZFN-Mediated *In Vivo* Genome Editing Results in Phenotypic Correction in MPS I and MPS II Mouse Models

Russell DeKelver, PhD
Sangamo Therapeutics
Mucopolysaccharidosis (MPS) types I & II result from lysosomal accumulation of dermatan & heparan sulfate

Glycosaminoglycans (GAGs)

Iduronate 2-sulfatase (IDS/MPS II)

α-L-iduronidase (IDUA/MPS I)

- MPS I is autosomal
- MPS II is X-linked
- Incidence is ~0.3-1 per 100,000 births
- Life expectancy in severe forms less than 10 years

Modified after Neufeld and Muenzer 2001 & Kowalewski 2012
Mucopolysaccharidosis (MPS) types I & II result from lysosomal accumulation of dermatan & heparan sulfate

Current treatment options:

Hematopoietic stem cell transplantation (HSCT)
- Severe MPS I only
- Significant mortality & morbidity risk

Enzyme replacement therapy (ERT)
- Frequent, hours-long infusions
- Does not cross blood-brain barrier
- Fails to treat some skeletal and cardiac valvular disease

Modified after Neufeld and Muenzer 2001 & Kowalewski 2012
Systemic delivery of ZFNs and transgene donor via AAV vectors for *in vivo* correction of monogenic disease

In vivo genome editing

- **AAV vectors**
- **ZFN1 and 2**
- **Therapeutic gene (IDUA or IDS)**
- **Strong albumin Promoter**
- **Albumin locus**
- **Therapeutic gene**
- **Homology arm**

Following *one-time dosing*, liver stably secretes therapeutic protein, which can *cross-correct* other tissues via circulation.
ZFN-mediated integration of an IDUA or IDS cDNA at the liver albumin locus results in secreted enzyme
Systemic delivery of ZFP therapeutics via AAV vectors in
MPS I and MPS II mouse models

AAV Vectors

Packaged into adeno-associated viral vectors (AAV)

One-time peripheral IV administration

MPS I mice (Ohmi et al.)
- Male and female animals, single dose level: 7.5e13 vg/kg (assuming 20 g mouse)

MPS II mice (Muenzer et al.)
- Male animals only at three dose levels: 1.25, 2.5, 7.5e13 vg/kg (assuming 20 g mouse)

Both models:
- 1-2 month old mice at dosing
- Periodic plasma (activity) and urine (GAG) analysis
- 4 month cohort with neurological testing, full necropsy and histopathology

Albumin ZFN pair and corrective gene

ZFN1

ZFN2

Homology IDUA or IDS

Homology
IDS is produced in the liver, secreted into plasma, & taken up by secondary tissues, with significant GAG reduction in **MPS II mice**

- **IDS activity** (nmol/hr/mg)
- **Total GAG Levels** (µg GAG/mg protein)
- **Plasma**

Tissues (4 months)

Days post-injection

- **ZFN+Donor vs MPS I Untreated**
 - P-values: *p<0.01; #p<0.05
Mass spectrometry confirms significant reduction of dermatan sulfate in the brains of **MPS I** and **MPS II** mice

Dermatan Sulfate

- **MPS I**
 - Wild type, Untreated
 - MPS I male, Untreated
 - MPS I female, Untreated
 - MPS I male, ZFN+Donor
 - MPS I female, ZFN+Donor
 - MPS I, Donor Only

- **MPS II**
 - Wild type, Untreated
 - MPS II, Untreated
 - MPS II, ZFN+Donor Low
 - MPS II, ZFN+Donor Mid
 - MPS II, ZFN+Donor High
 - MPS II, Donor Only

Heparan Sulfate

- **MPS I**
 - Wild type, Untreated
 - MPS I male, Untreated
 - MPS I female, Untreated
 - MPS I male, ZFN+Donor
 - MPS I female, ZFN+Donor
 - MPS I, Donor Only

- **MPS II**
 - Wild type, Untreated
 - MPS II, Untreated
 - MPS II, ZFN+Donor Low
 - MPS II, ZFN+Donor Mid
 - MPS II, ZFN+Donor High
 - MPS II, Donor Only

P-values: *p<0.05**

LLOQ = 0.005 µg/mg
Reduced cellular vacuolation in treated **MPS II** animals (4 months post-dosing)
Reduced cellular vacuolation in treated MPS I & MPS II animals (4 months post-dosing)

Reduced levels of vacuolation were also detected in treated MPS I & MPS II mice in:

- Liver (Kupffer cells)
- Spleen, Kidney & GI tract
- Heart & Lung
- Pituitary & Parathyroid glands
- Bone marrow, Thymus & Lymph nodes
- Bone (sternum) & Femoral-tibial joint
- Spinal cord (neuronal, glial cells; MPS I only)
ZFN+Donor treated MPS I and MPS II mice show significant preservation of cognitive function in Barnes maze.

MPS I, Grouped
- Male mice
- ZFN+Donor vs MPS Untreated
- *p<0.05, **p<0.001

MPS II, Grouped
- MPS II, High Dose
- Wild type

MPS II, Individual mice, Day 6
- Wild type
- MPS II
- MPS II, High Dose

Mice analyzed 4 months post-dosing.
hIDS produced from the human albumin locus is taken-up in an M6P-dependent manner *in vitro*

Human Albumin ZFN pair and hIDS donor

Human Hepatoma HepG2 cells

HepG2 subclones producing hIDS

Secreted hIDS

IDS uptake in target cells

- **Control media**
- **IDS supernatant**

Graph

- **Control**
 - IDS activity (nmol/hr/mg)
 - 0 200 400 600 800

- **Mannose-6-Phosphate**
 - **M6P receptor**
 - **Secreted hIDS**
 - **Lysosomal hIDS**
hIDS produced from the human albumin locus is taken-up in an M6P-dependent manner *in vitro*
AAV-mediated delivery of Albumin ZFNs and hIDUA or hIDS Donor in MPS I & II mice led to:

- Supraphysiological expression of active enzyme in the liver
- Secretion into plasma and
- Uptake into secondary tissues, at levels sufficient for reduction in GAG biomarker and tissue vacuolation

- Significant cognitive benefits were observed at 4 months (Barnes Maze)
- Durable enzyme expression and GAG reduction over 4 months
- Additional histopathology analysis shows that treatment is well-tolerated
- *In vitro* studies using human reagents demonstrate that highly active and glycosylated IDUA & IDS produced from the human Albumin locus are taken-up in an M6P-dependent manner

Phase 1/2 clinical trials are currently open to evaluate *in vivo* genome editing of the Albumin locus for the treatment of MPS I & MPS II
In 2017, Sangamo is focused on enrolling four clinical trials including the first ever human *in vivo* genome editing studies.

<table>
<thead>
<tr>
<th></th>
<th>Research</th>
<th>Preclinical</th>
<th>Phase 1/2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemophilia A</td>
<td></td>
<td>★</td>
<td>★</td>
<td></td>
</tr>
<tr>
<td>Hemophilia B</td>
<td></td>
<td>★</td>
<td>★</td>
<td></td>
</tr>
<tr>
<td>MPS I</td>
<td></td>
<td>★</td>
<td>★</td>
<td></td>
</tr>
<tr>
<td>MPS II</td>
<td></td>
<td>★</td>
<td>★</td>
<td></td>
</tr>
</tbody>
</table>

In Vivo Gene Therapy
In Vivo Genome Editing
Acknowledgements

Thomas Wechsler
Susan Tom
Bob Radeke
Michelle Rohde
Susan St. Martin
Scott Sproul
Yolanda Santiago
Marshall Huston
Annemarie Ledeboer
Carolyn Gaspar
Melanie Butler
Kathleen Meyer
Edward J. Rebar
Michael C. Holmes

R. Scott McIvor
Chester B. Whitley
Kanut Laoharawee
Li Ou
Kelly M. Podetz-Pedersen
Michael J. Przybilla
Brenda L. Koniar
Renee D. Cooksley

University of North Carolina
Joseph Muenzer