STAAR, a Phase 1/2 study of isaralgagene civaparvovec (ST-920) gene therapy in adults with Fabry disease

Robert J. Hopkin¹

¹Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA

WORLDSymposium 2023 Orlando, Florida, February 22-26, 2023

Isaralgagene civaparvovec (ST-920) for Fabry Disease Treatment

Potential Advantages

- Safe, one-time administration
- Eliminate ERT infusions
- Durable efficacy
- Low immunogenicity
- No prophylaxis with steroids or other immunomodulating agents

STAAR phase 1/2 clinical trial overview

Phase 1/2, global, open-label, single-dose, dose-ranging multicenter study to assess the safety and tolerability of ST-920, an AAV2/6 human α -Gal A gene therapy in patients with Fabry disease

ENTRY CRITERIA

- Patients \geq 18 years of age
 - On ERT Treatment, or
 - ERT-naïve, or
 - ERT-pseudo-naïve (no ERT in prior 6 months)

PRIMARY OBJECTIVE

• Safety and tolerability of ST-920

OTHER KEY OBJECTIVES

- α -Gal A activity and Lyso-Gb3 response
- Discontinuation of ERT
- Preliminary evidence of efficacy
 - Renal function and renal Gb3 inclusions
 - Cardiac function and left ventricular hypertrophy
- Patient Reported Outcomes (Quality of Life)

Dose escalation phase: classic Fabry disease males baseline characteristics

vg/kg		Age (years)	ERT	Total Max 65	.5	General Max I 4.5	Neuro Max 15	Cardiac Max 18	Renal Max 18	GLA Mutation	Length of Follow up
Cohort I 0.5 × 10 ¹³	Т	48	Agalsidase beta	Moderate	30.5	6.5	7	13	4	G261D	26 M
	2	25	Pseudo naïve	Mild	12	4	8	0	0	T1411	25 M
Cohort 2 × 10 ¹³	3	42	Pseudo naïve	Moderate	20.5	8.5	9	3	0	W340R	21 M
	4	22	Agalsidase beta	Mild	10	4	6	0	0	S297Y	17 M
Cohort 3 3 × 10 ¹³	5	39	Agalsidase beta	Moderate	23	5	8	6	4	Q283X	12 M
	6	42	Agalsidase beta	Mild	18.5	8.5	2	8	0	N215S	9 M
	7	51	Agalsidase beta	Severe	40.5	11.5	12	13	4	c.801+ 3A>G	6 M
Cohort 4 5 × 10 ¹³	8	49	Naïve	Moderate	20	2	I	9	8	P362L	6 M
	9	40	Naïve	Mild	18.5	3.5	6	9	0	T1411	6 M

Participants in the dose escalation phase are representative of males with classic Fabry disease

- Participants generally had mild to moderate disease severity
 - Mild = 44.4% (4/9)
 - Moderate = 44.4% (4/9)
 - Severe = 11.1% (1/9)
- Range of organ involvement is variable among participants
 - Renal involvement present in 44% at baseline (4/9)
 - Cardiac manifestations present at baseline in 78% (7/9)

Expansion phase: baseline characteristics all treated with 5×10^{13} vg/kg

		Age (years)	ERT	Total Max 65	.5	General Max 14.5	Neuro Max 15	Cardiac Max 18	Renal Max 18	GLA Mutation	Length of Follow up
Cardiac	12	67 Female	Agalsidase beta	Mild	17.5	5.5	3	9	0	D266N	4 W
α-Gal A Ab Positive Males	10	34	Pseudo naïve	Moderate	32.5	7.5	7	14	4	N34S	10 W
	П	49	Agalsidase beta	Moderate	28	12	9	3	4	Y134S	9W
	13	38	Agalsidase beta	Mild	17.5	6.5	5	6	0	A348Gfs X27 insertion	2 W

 To date, Expansion Phase participants treated with ST-920 had mild or moderate disease severity

- Mild = 50% (2/4)
- Moderate = 50% (2/4)

ST-920 is generally well tolerated with a favorable safety profile: Overall summary of treatment-emergent AEs

	Dose Escalation Cohorts								Expansion			
	Cohort I 0.5 × 10 ¹³ vg/kg N = 2		Cohort 2 × 0 ¹³ vg/kg N = 2		Cohort 3 3 × 10 ¹³ vg/kg N = 3		Cohort 4 5 × 10 ¹³ vg/kg N = 2		Groups 5 × 10 ¹³ vg/kg N = 4		Total N = 13	
	Ν	Events	Ν	Events	Ν	Events	Ν	Events	Ν	Events	N (%)	Events
Adverse Events	2	30	2	20	3	29	2	10	4	18	13 (100%)	107
Treatment Related Adverse Events	I.	3	2	3	I	6	2	6	4	12	10 (77%)	30
Serious Adverse Events (Unrelated)	0	0	0	0	I	I	0	0	0	0	l (7.7%)	I

Most Common Treatment Related Adverse Events (All Grade I or Grade 2)

- Pyrexia, headache, chills
- Fabry disease (increased pain)

Serious Adverse Events (Unrelated)

• Unrelated Sepsis (Cohort 3, I participant)

Medical Dictionary for Regulatory Activities (MedDRA) Preferred Terms used for adverse event terminology Data cut-off date: October 20, 2022 Length of follow-up ranged from 2 weeks to 26 months vg/kg, vector genomes per kilogram of total body weight

No Treatment Related Adverse Events greater than a Grade 2 as of the cut-off date

- Hepatic Enzymes
 No administration of
 corticosteroids
 for transaminase elevations
- **Platelets** No clinically significant decreases in platelets observed
- Cardiac Events
 Not observed
- Allergic reaction
 One expansion phase
 participant experienced a
 Grade I allergic reaction
 treated with diphenhydramine

Rapid, predictable and stable expression of α -Gal A activity occurred in all Dose Escalation cohorts

300

200

100

90

80

70

60

50

40

30

20

0

-350 0

Cohort 2: 1×10^{13} vg/kg, N = 2

Participant 4 (ERT; Withdrawn)

3.7-fold

Participant 3 (Pseudo-naïve)

7 0-fold

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Data cut-off date: November 15, 2022

(nmol/h/mL)

Ā

α-Gal A activity measured using 3-hour reaction time. Normal range determined in healthy males.

Fold change from normal mean was calculated at last measured time point. Long Term Follow-up Data: Data points > Study Day 365.

 α -Gal A, alpha-galactosidase A; ERT, enzyme replacement therapy

- Rapid and predictable increase in α-Gal A activity observed in all participants 4-8 weeks after dosing
 - Supraphysiological α-Gal A activity maintained in all participants
 - ERT withdrawal completed for all 5 participants – with continued supraphysiological activity following withdrawal
 - ST-920 expression observed was durable, with α-Gal A activity at supraphysiological levels maintained in all participants, up to more than two years

The proposed Phase 3 clinical trial dose (5 × 10^{13} vg/kg) produced rapid, sustained increases in α -Gal A activity in Dose Escalation (Cohort 4) and Expansion Phase participants

Data cut-off date: November 15, 2022 Participant 13: Week 6: 3.97 nmol/h/mL. α-Gal A activity measured using 3-hour reaction time. Normal range determined in healthy males. Long Term Follow-up Data: Data points > Study Day 365 α-Gal A, alpha-galactosidase A; ERT, enzyme replacement therapy

- The highest dose (5 × 10¹³ vg/kg) produced rapid, predictable and durable increases in plasma α-Gal A activity across all participants as of the data cut-off
- The female participant has demonstrated a similar response profile to males as of the data cut-off

ST-920 effectively lowered plasma Lyso-Gb3 in naïve and pseudo-naïve participants across Dose Escalation and Expansion Phases

Data cut-off date: October 20, 2022

Lyso-Gb3 normal range determined in healthy males and females Normal range for males and females combined 0.32 to 0.63 ng/mL *The time point immediately preceding ST-920 administration was presented as the baseline value and used to calculate percent reduction Long Term Follow-up Data: Data points > Study Day 365 Lyso-Gb3, globotriaosylsphingosine

- Where baseline levels of Lyso-Gb3 started high (>80 ng/mL), participants experienced a 40% to 65%* reduction in plasma levels
- For the first time, at the high dose, we observed a further reduction (54%) in Lyso-Gb3 where baseline plasma levels started lower (<25 ng/mL)
- Plasma Lyso-Gb3 continued to decrease in two participants
- Plasma Lyso-Gb3 levels were stable up to 25 months

Plasma Lyso-Gb3 in ERT-treated dose escalation and expansion phase participants

Data cut-off date: October 20, 2022 Participant 13: Week 2 34.5 ng/mL Lyso-Gb3 normal range determined in healthy males and females Normal range for males and females combined 0.32 to 0.63 ng/mL Long Term Follow-up Data: Data points > Study Day 365 Lyso-Gb3, globotriaosylsphingosine; ERT, enzyme replacement therapy

Dose Escalation Phase

- ERT withdrawal was successful in all ERT-treated participants
- Lyso-Gb3 levels following ERT withdrawal remained within the range of levels and variability normally observed in participants treated with ERT^{1, 2, 3}
- In these participants, α-Gal A activity remained elevated, and no participant has experienced symptoms requiring the resumption of ERT

Expansion Phase

- At this data cut, ERT withdrawal had not yet been initiated for any participant
- I. Arends, M., M et al. 2018. J Med Genet, 55: 351-58.
- 2. Nowak, A., F. et al. 2022. J Med Genet, 59: 287-93.
- 3. Kramer, J., M. et al. 2018. Nephrol Dial Transplant, 33: 1362-72.

Participant 9: biomarkers of nephropathy significantly improved. Reduced renal Gb3 inclusions and podocyturia

Cohort 4 (5 × 10¹³ vg/kg) - <u>high number of Gb3 inclusions and lyso-Gb3 at baseline</u>

Representative PTC Images

Data cut-off date: October 20, 2022

Podocyte quantification was performed via immunofluorescence with urine creatinine normalization.

The Barisoni Lipid Inclusion Scoring System (BLISS) was used in a blinded manner by 3 independent pathologists to quantify PTC Gb3 inclusions. Lines above the bars indicate standard deviation.

Plasma α-Gal A

Plasma lyso-Gb3

(ng/mL)

activity (nmol/h/mL)

Below LOQ

167

74.2

66.8

α-Gal A, alpha-galactosidase A; ERT, enzyme replacement therapy; PTC, peritubular capillary; lyso-Gb3, globotriaosylsphingosine; Gb3, globotriaosylceramide

- ST-920 cleared 78% of Gb3 inclusions from peritubular capillaries
- ST-920 also reduced urinary podocyte loss by 77%
- This participant exhibited significant increase in α-Gal A activity and reduction in lyso-Gb3 after dosing with ST-920
- The significant decrease in renal Gb3 inclusions and the reduction in urine podocyte loss support a potential favorable impact on progression of Fabry nephropathy

13 × Mean

Normal

60% 🗸

Participant 8: stable renal Gb3 inclusions and reduced podocyturia

Cohort 4 (5 × 10¹³ vg/kg) - lower number of Gb3 inclusions and lyso-Gb3 at baseline

Podocytes in urine

Baseline

0.96

16.9

Plasma α-Gal A

Plasma lyso-Gb3

(ng/mL)

activity (nmol/h/mL)

Week 24

46.89

7.24

Change

8 × mean

normal

57% 🗸

Baseline

Week 24

Representative PTC Images

Data cut-off date: October 20, 2022

Podocyte quantification was performed via immunofluorescence with urine creatinine normalization.

The Barisoni Lipid Inclusion Scoring System (BLISS) was used in a blinded manner by 3 independent pathologists to quantify PTC Gb3 inclusions. Lines above the bars indicate standard deviation.

α-Gal A, alpha-galactosidase A; ERT, enzyme replacement therapy; PTC, peritubular capillary; lyso-Gb3, globotriaosylsphingosine; Gb3, globotriaosylceramide

- Peritubular capillary (PTC) renal Gb3 inclusions were stable in this participant
- ST-920 reduced urinary podocyte loss by 97%
- This participant exhibited significant increases in α-Gal A activity and reductions in lyso-Gb3 after dosing with ST-920
- These data provide additional evidence of a potentially favorable effect on Fabry nephropathy

In this participant chronic kidney disease may be multifactorial with possible contributions from hypertension and type 2 diabetes

Dose escalation phase: clinically meaningful and statistically significant increase in mean SF-36 general health scores

General Health Score Dose Escalation Phase

Study Week	Change from Baseline Mean ± SE, 95% CL					
Baseline						
Week 24	2.9±2.57 [-3.2, 8.9]					
(n=8)	p=0.2996					
Week 52	19.6±4.26 [7.8, 31.4]					
(n = 5)	p=0.010					

Reference: ADQS, Listing 16.2.14, Table 14.3.4.5a Data points from the LTFU (Day 750) are not included CL: Confidence limit; SE, standard error

- Change from baseline at Week
 52 is statistically significant with mean=19.6, 95% CL: [7.8, 31.4], p=0.010 (paired t-test)
- A 3-to-5-point change on any SF-36 score is the minimally clinically important difference (MCID)¹

I. Arends, M., C. E. Hollak, and M. Biegstraaten. 2015. Orphanet J Rare Dis, 10: 77.

Data cut-off date: October 20, 2022 Long Term Follow-up Data: Data points > Study Day 365 SF-36, Short Form-36

Conclusion | Isaralgagene civaparvovec (ST-920)

EVIDENCE OF EFFICACY IN FABRY DISEASE

- Clearance or stabilization of renal Gb3 inclusions along with reductions in urine podocyte loss suggest a favorable impact on progression of Fabry nephropathy
- Stable expression of α -Galactosidase A activity in 13 participants for over two years for the longest treated participant
- All participants in the Dose Escalation phase who commenced the study on ERT have been successfully withdrawn from ERT and remain off ERT with sustained supraphysiological levels of α–Galactosidase A activity
- 40% to 65% plasma Lyso-Gb3 reduction in naïve/pseudo-naïve participants with high plasma Lyso-Gb3
- Lyso-Gb3 levels following ERT withdrawal remained within the range of levels and variability normally observed in participants treated with ERT
- Clinically meaningful and statistically significant increase in mean general health scores

FAVORABLE SAFETY PROFILE TO DATE

- Generally well tolerated at all doses (0.5×10^{13} to 5×10^{13} vg/kg)
 - Classic males (n=12) and a female (n=1)
 - ERT-treated and ERT-naïve participants

LOW AAV2/6 CAPSID IMMUNOGENICITY

• No requirement for prophylactic corticosteroids or other immune modulating agents

THE PROPOSED PHASE 3 STUDY DOSE IS 5 × 10¹³ VG/KG

• The Phase 1/2 STAAR study Expansion Phase is ongoing, with a further four participants dosed since the October 20, 2022 cut-off date. Phase 3 preparation is in progress.

Acknowledgments

Study authors: Robert J. Hopkin¹, Jaya Ganesh², Patrick Deegan³, Ozlem Goker-Alpan⁴, John Bernat⁵, William R. Wilcox⁶, Madeleine V. Pahl⁷, Chester B. Whitley⁸, Derralynn Hughes⁹, Kathleen Nicholls¹⁰, Liching Cao¹¹, Michael Chen¹¹, Lisa H. Shiue¹¹, Emma Bowden¹¹, Sravan Jaggumantri¹¹, Cristobal Passalacqua¹¹, Bernard Souberbielle¹¹, John Shoffner¹¹, Matthew Meriggioli¹¹, Bettina M. Cockroft¹¹.

¹Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA,
²The Icahn School of Medicine at Mount Sinai, New York, NY, USA,
³Addenbrooke's Hospital, Cambridge, United Kingdom,
⁴Lysosomal & Rare Disorders Research & Treatment Center, Inc, Fairfax, VA, USA,
⁵University of Iowa, Iowa City, IA, USA,
⁶Human Genetics, Emory University, Atlanta, GA, USA,
⁷University of California, Irvine, Orange, CA, USA,
⁸University of Minnesota, Minneapolis, MN, USA,
⁹University College London, London, United Kingdom,
¹⁰Royal Melbourne Hospital, Parkville, Australia,
¹¹Sangamo Therapeutics, Inc., Brisbane, CA, USA.

The authors would like to thank the patients, families, study investigators and their teams for their participation in this study