

Preclinical Development of a Zinc Finger Transcriptional Repressor Targeting the SCN9A Gene as a Novel Therapy for Peripheral Neuropathic Pain

Toufan Parman, PhD, DABT Senior Director, Nonclinical Safety Evaluation Sangamo Therapeutics

CRL Biotechnology Symposium September 12, 2023 Disclosure

Sangamo is a genomic medicine company that aims to transform patients' lives by replacing today's symptomatic treatments with tomorrow's genomic cures. We are working with urgency to create new medicines and new hope for patients.

> I am a full-time employee of Sangamo Therapeutics, Inc.

Zinc Finger Proteins

What are Zinc Finger Proteins (ZFPs)

- They are natural proteins that bind DNA sequences
- They are nature's choice for highly specific DNA binding
- The most natural function of ZFPs is to regulate the epigenetic state of other genes

Library with thousands of 2-finger modules

6 Base pair subsites

6-finger ZFPs

18 Base pair target site

Sangamo

Zinc Finger Platform Zinc Finger based epigenetic regulation is the best-in-class **Key Features** approach for safe and effective genomic medicines **Zinc Finger** Highly potent, exquisitely specific, and optimizable for any target **Protein** All components are derived from naturally occurring human genes Tunable expression with no modifications or edits to the genome Requires binding just two DNA targets per cell to regulate RNA and protein levels **DNA** Compact: Easily packaged into AAV, can be multiplexed **Zinc Finger Arrays** Bound to 18 bp Sequence

Epigenetic Regulation with Zinc Finger Activators and Repressors

Neuropathic Pain and Role of Nav1.7

Neuropathic Pain: A Debilitating Condition with a High Unmet Need

Given the lack of effective treatments, there is an urgent need to develop novel therapeutics for the treatment of chronic neuropathic pain

Role of SCN9A (Nav1.7) Gene in Inherited Pain Disorders

- NavI.7 is a voltage gated sodium channel encoded by SCN9A gene and is expressed in the Dorsal Root Ganglion (DRG) sensory neurons
- Mutations in the SCN9A gene are linked to inherited pain disorders
 - Alterations in NavI.7 activity directly regulate pain levels in several genetic disorders, validating NavI.7 as a therapeutic target for pain
- Lowering Nav1.7 is expected to reduce pain without adversely affecting other sensory functions
- High structural similarities among Nav channels has made it challenging to develop Nav I.7 selective inhibitors

Nav 1.7 Repression as Potential Therapy for Various Pain Indication

- Repressing Nav I.7 in the DRG sensory neurons is expected to prevent the <u>transmission of nociceptive pain signals</u> to the brain
- This allows targeting <u>multiple</u> <u>neuropathic pain indications</u>, regardless of the cause of pain
- Reducing pain by repressing Nav1.7 is not predicted to be associated with any CNS adverse effects

Zinc Finger-Mediated Gene Regulation for Neurological Diseases

Preclinical Development Strategy

Mouse Surrogate ZF-R Screening and Efficacy Study

Screening and Selection of Surrogate ZF-Rs Targeting Mouse Scn9a Gene

Sanaama

- Screened ~ 800 Surrogate ZF-Rs in vitro
- Selected top two Surrogate ZF-Rs with dose dependent Nav 1.7 mRNA repression
- The selected ZF-Rs showed exquisite selectivity in mouse neurons

4-Week Target Engagement Study after a Single Dose in Mice

AAV (clinical capsid)

Dose – 2.00E II vg/animal

NOON

🕓 4 weeks in-life phase

- Both ZF-Rs were well tolerated
- Surrogate ZF-Rs resulted in 60%-75% reduction in mouse Nav1.7 in lumbar DRG (P ≤ 0.0001)
- No neuronal loss or neuroinflammation was observed in the lumbar DRG

Spared Nerve Injury (SNI) Mouse Model of Neuropathic Pain

SNI mouse model generation

- Gold standard model of chronic neuropathic pain
- Surgically generated
- Increased pain response in the affected hind paw
- Pain monitored as nocifensive behavior
 - Paw withdrawal, licking paw, and shaking paw

Pain assessment using SNI model

induced pian

Cold

- Von Frey assessment
- Response is measured in Force (g)
- Pressure is applied from the bottom of the cage to the affected paw

- Cold plate measurement
- Paw withdrawal responses are measured in seconds (s)

Efficacy Study Design in SNI Mouse Model of Neuropathic Pain

Group	Treatment	Total Dose (vg/mouse)	Dose mg/kg	No. of Mice		
I.	Sham Operated*	0	-	8M/8F		
2	Vehicle Control (Buffer for ZF-R)	0	-	8M/8F		
3	Gabapentin (GBP)	-	50**	8M/8F		
4	ZF-R a	8.12E+11	-	8M/8F		
5	ZF-R b	7.99E+11	-	8M/8F		

* Animals had mock surgery and did not receive ZF-TF or Vehicle ** 50 mg/kg given one hour before assessment on each assessment day

Analysis In-life

Clinical and necropsy observation

Tissue

 RT-qPCR for Nav 1.7 transcript in DRG neurons

Pain

- Mechanical induced pain
- Cold induced pain

Effect of ZF-Rs on Mouse Nav1.7 in DRGs

Both ZFRs repressed NavI.7 in Lumbar and Cervical DRGs better than in Thoracic DRG

SNI model

Potent Repression of Scn9a mRNA in Nociceptors of Mouse Lumbar DRG

Sangame

Non transduced cell

Efficacy of Mouse Surrogate ZF-Rs in SNI Model of Neuropathic Pain (Females)

20

Time Course of Pain Phenotype Rescue after Mouse ZF-R Administration

ZF-Rs rescue pain phenotype as early as Day 3 post administration

Conclusion - Mouse ZF-R Summary

- More than 500 ZF-Rs targeting mouse NavI.7 were designed and screened
- The top ZF-Rs were selected based on on-target *in vitro* efficacy and minimal off-target in mouse neurons
- Mouse ZF-Rs were well tolerated in vivo and did not result in neuroinflammation or neuronal loss
- ZF-Rs were able to significantly repress Nav1.7 gene in the lumbar DRG one month after injections
 > Bulk level
 - ➤ Single-cell level
- ZF-Rs significantly increased pain threshold in a SNI mouse model (Gold Standard model of neuropathic pain)
- Pain threshold was increased longitudinally as early as Day 3 post ZF-R single IT administration

Human ZF-R Screening and Clinical Candidate Selection

Screening and Selection of Human ZF-Rs Targeting Human SCN9A Gene

After screening of ~800 ZF-Rs:

Sangamo

- Affymetrix analysis of 20,000 genes showed presence of no off-target suggesting high selectivity of ZF-Rs
- No repression of any other Nav channels was observed suggesting high specificity of ZF-Rs

Potency of Manufactured AAV-ZF-Rs in Human iPSC Derived Neurons

Single Dose Range-Finding Toxicology Study: Objectives and Design

Objectives

- Several objectives to satisfy regulatory requirements
- Key objective
 - Selection of a clinical candidate from three lead ZF-TFs

Two AAV/ZF-Rs Tested (ZF-R A or ZF-R B)

9EI3 vg/animal (2M/IF)

Vehicle control (IM/IF)

Study Design

Route:Intrathecal-Lumbar (IT-L)Species:Cynomolgus Monkey (NHP)Age:2-3yrs

Clinical Candidate Selection Criteria

Pharmacology of Human ZF-Rs in Nonhuman Primates

ZF-Rs repressed SCN9A gene bulk mRNA levels from 30-55% depending on dose and tissue type

Low - 1e12 Mid - 1e13 High - 9e13

--- Basal level Nav I.7 expression is set to 1.0 on the y-axis.

[#] A single outlier > 1.5 not displayed for ZF-R B at low dose.

* $P \le 0.05$, ** $P \le 0.001$, *** $P \le 0.0005$ (Compared with the control group)

General Toxicology

- Endpoints evaluated:
 - > Mortality/Morbidity
 - Clinical Signs
 - Body Weights
 - Clinical Pathology
 - Hematology
 - Clinical Chemistry (including liver panel)
 - \circ Coagulation
 - Necropsy Observations
 - > Organ Weights

Histopathology

Sangame

• Evaluation Outcome:

For both ZF-Rs:

- ZF-R-related toxicity was not present in any of the endpoints evaluated except for histopathology
- Histopathology findings related to ZF-Rs were noted

Pathology: Tissues Evaluated and Scoring System

Major Internal Organs Evaluated:

- Adrenal Gland
- Epididymis
- Heart
- Kidney
- Intestine Large (Jejunum)
- Intestine Small (Duodenum)
- Liver
- Lung
- Lymph Node (mandibular)

- Ovary
- Pancreas
- Skeletal Muscle
- Spleen
- Stomach
- Testes
- Thymus
- Uterus/cervices

Central and Peripheral Nervous System Tissues Evaluated:

- Brain
- DRGs (left and right)
 - Cervical: C2 and C4
 - Thoracic: T2, T4, and T5
 - Lumbar: L3, L4, and L7
 - \circ Sacral: S2
- Olfactory Bulb

- Sciatic Nerve
- Spinal Cord
 - Cervical: C2, and C4
 - \circ Thoracic: T2, T4, and T5
 - Lumbar: L3, L4, and L7
- Trigeminal Ganglia

Scoring System

Grade	Percent of tissue affected						
Normal	0						
Minimal	<5%						
Mild	5-20%						
Moderate	20-40%						
Marked	>50%						

<u>Minimal</u> and <u>Mild</u> findings are <u>not</u> considered dose-limiting for AAV gene therapy

Histopathology: Findings and Scores

Tissues Affected	Types of Findings	Finding Scores						
 All evaluated tissues were normal except for the following tissues: DRGs (S, L, T, C) Spinal cord (L, T, C) Sciatic nerve Trigeminal ganglia S = Sacral; L= Lumbar; T = Thoracic; C = Cervical DRGs = Dorsal Root Ganglia 	 Mononuclear cell infiltration (MN) Due to inflammatory response Recruitment of lymphocytes and monocytes into the tissue Axonal Degeneration (AD) Single Neuronal Degeneration/Necrosis (SDN) 	 Majority of findings were <u>minimal</u> for both ZF-Rs at all dose levels Few <u>mild</u> findings were noted only for one ZF-R B at the high-dose 						

<u>Minimal</u> and <u>Mild</u> findings in DRG, SC, TG and SN neurons are <u>not</u> considered doselimiting for AAV gene therapy

Anti-AAV Neutralizing Antibody in CSF after a Single ZF-R IT-L Administration

Selection of the Clinical Candidate Based on the Three Selected Criteria

- Selected ZF-R A as the clinical candidate for the following reasons:
 - Demonstrated an excellent profile and fulfilled all three criteria at all dose levels including the <u>highest dose</u> administered (9.00E+13)
 - ✓ No general toxicity
 - ✓ Minimal tissue score for pathology
 - ✓ Good Nav1.7 gene repression

Conclusion - Human ZF-R Selection

- The neutralizing antibody formation in serum and CSF pre- and post-treatment did not impact safety or level of repression
- No ZF-R related safety findings in other general toxicity endpoints
- Both ZF-Rs were well tolerated and no dose-limiting toxicity in DRG, SC, TG or sciatic nerve even at the highest dose administered
- Clinical candidate ZF-R A is selected
- > GLP study in NHPs to initiate in 2023 and IND submission anticipated in 2024

Acknowledgement

Sangamo Therapeutics

CNS Research Mohammad Samie Dianna Baldwin Vidales Dan Chung Sarah Hinkley Mihika Jalan Patrick Dunn Jisoo Lee Bryan Zeitler Amy Pooler Jason Fontenot Luke Workley TechOps/CMC Sandeep Yadav

Vector Core Alicia Baldwin

Bioinformatics Jason Eshleman

Clinical John Shoffner Kenneth Kennard Carolyn Gasper Josh Holter Brian Jones Khaled Hettini Andres Gordillo Villegas Yonghua Pan Kathleen Meyer

Nonclinical

Charles River Laboratories (Reno)

David Clark Rebekah I. Keesler

Pathology: Incidence Summary by Group

Test Article	Dose Level	Animal #	Scia Ne	atic rve	TGG (R)	D (RG (C)	DRG (T)		DRG (L)		DRG (L)		DI (S	RG 5)	SP (C)	SP (T)	SI (L	P -)	Inciden
		M (6001)			MN							MN				M	N	Incluenc		
ZF-R A	Low	M (6002)									MN									
		F (6601)			MN	1	MN	٢	1N					AD	AD	AI	D	• ZF-R		
	M: J	M (7102)						٢	1N	MN	SDN	MN	SDN	AD	AD	M	N	one an		
	DIIM	F (7501)													AD	M	N	lumbar		
		M (8001)								М	N			AD	AD	AI	D	cord; 2		
	High	M (8002)													AD	M	N	in iumi		
		F (8501)			MN			٢	1N	MN	SDN							• ZF-R		
		M (9001)								М	N	MN	SDN					finding		
	Low	M (9002)			MN	1	MN			М	N	М	N							
		F (9501)			MN	1	MN			М	N	М	N							
		M (10001)				1	MN	MN	SDN											
ZF-R B	Mid	M (10102)								М	N							No		
		F (10501)								MN SDN		N				AI	D	Mi		
	High	M (11001)	MN	AD						MN	SDN	MN	SDN		AD	MN	AD	Mi		
		M (11102)	A	D	MN					MN	SDN	М	N					Mo		
		F (11601)	MN	AD		MN	SDN	MN	SDN	MN	SDN	MN	SDN		AD			Ma		

Incidence and frequency of mild findings:

ZF-R B: In the high-dose group one animal had mild findings in lumbar DRG, and thoracic spinal cord; 2 animals had mild findings in lumbar and one in sacral DRGs

ZF-RA: no animal had mild findings at any dose level.

Grade	Percent of tissue affected						
Normal	0						
Minimal	<5%						
Mild	5-20%						
Moderate	20-40%						
Marked	>50%						

