
The Impact of Empty Capsids on AAV Manufacturing and Strategies for Enhancing Yield, Purity, and Stability in the Production of a Novel Blood-Brain Barrier Penetrant AAV Capsid

Taeho Kim, Saba Ghazvini, Zelong Xie, Jada Padilla, Anthony Chikere, Sandeep Yadav Sangamo Therapeutics, 7000 Marina Blvd, Brisbane, CA

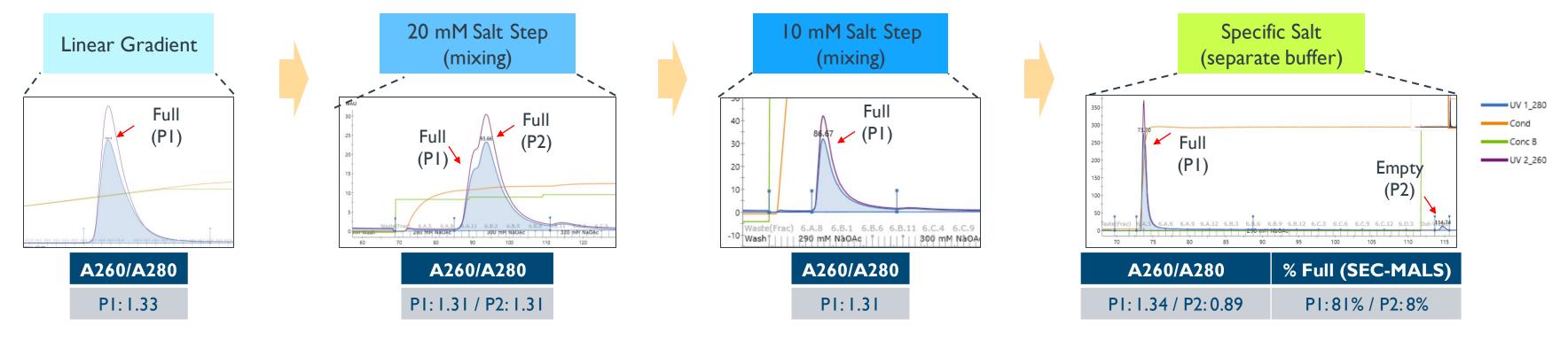
Introduction

- Successful AAV manufacturing is essential to advancing genomic medicines for the treatment disorders
- Here we report process optimizations and discuss strategies that enhance the yield, purity, and BBB, a blood-brain barrier penetrant AAV capsid.
- Column chromatography steps were optimized to enrich full capsid particles containing the th
- In parallel, an optimized formulation buffer was identified in which STAC-BBB maintains stable under a range of stress conditions.
- Together, these advances support a robust and scalable AAV production process for STAC-BBE

AAV Purification: Lab scale vs. Manufacturing scale

Column loading density: a Critical Parameter for AAV Chromatogra

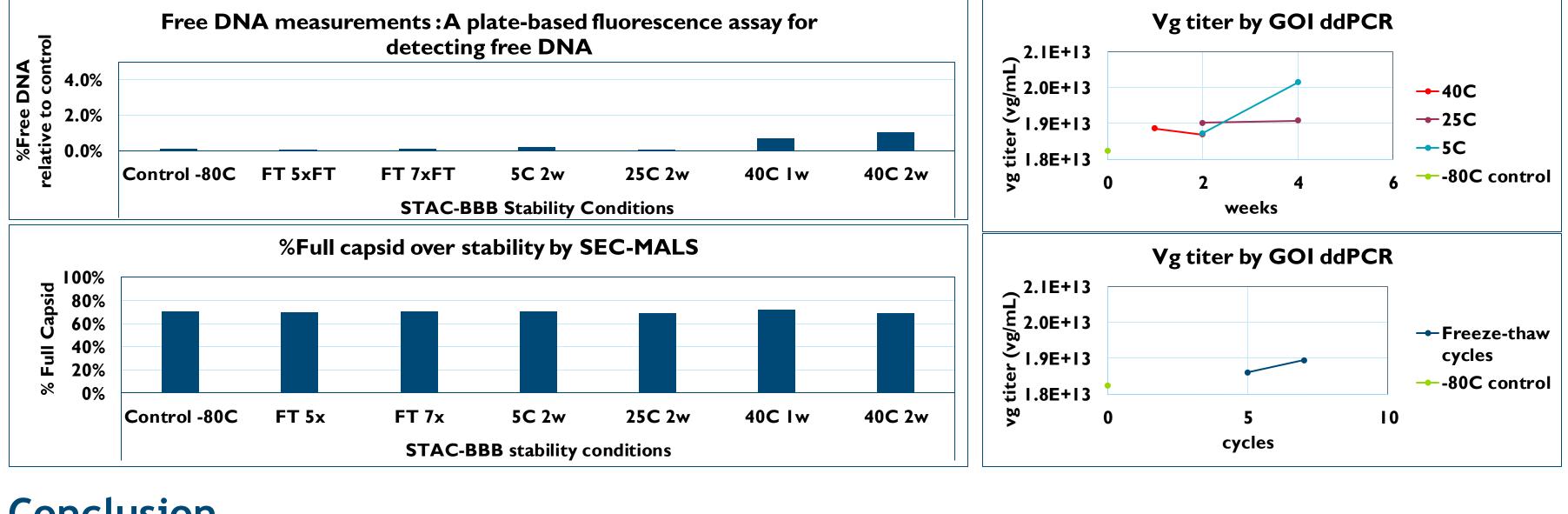
- Column loading density, measured as capsid particles per mL of chromatography resin, is a key efficiency.
- Column loading density affects dynamic binding capacity, separation performance, and overall y loading densities can enhance product capture, overloading the column compromises recover particularly when empty capsids are abundant.
- We investigated whether full and empty capsids exhibit different binding preferences on the at could potentially influence loading strategies.


AAV Empty and Full capsid Separation using Ion Exchange Chromate

- Separation of empty and full AAV capsids can improve product purity and potency.
- Ion exchange chromatography (IEX) separates molecules based on charge differences.
- Full capsids (containing DNA) have a different surface charge than empty capsids (no DNA), a • Buffer pH and salt gradient are critical for optimal separation.
- Careful column selection (anion vs. cation exchange) and gradient design improve resolution.
- We evaluated whether ion exchange chromatography (IEX) can efficiently enrich full capsids capsid content to support regulatory compliance and ensure therapeutic quality.

f neurological	Clarified Harvest					
C	AAV	Production	Transfection Full Capsid			
stability of STAC-		Platform				
apeutic genome.	STAC-BBB	HEK293 Suspension	3 plasmids		40 ~ 50%	
ctor genome titers	Capture Chromatograp	hy				
	Affinty Resin	Wash	Elution	Qu	ality Attributes Measured	
	POROS CaptureSelect	Tris, NaCl, pH 8.0	Buffer (pH 3.0) + Additives		Capacity,Vg titer, Cp tite e Flowthrough (FT)	
	Polish Chromatography					
Empty capsid	Polish Column	E/F Sepa	ration	Qu	Quality Attributes Measured	
Full capsid	Column Screening (AEX, CEX, Monolith)	Linear Gradient Isocratic Gradient (Large	Step \rightarrow Small Step)		Cp titer, aggregate, E/F in the Elution	
Empty capsids	Results Capture Resin Binding	Capacity				
			• 300 ml Clarified H	Harvest / Ir	nl affinity column	
Full capsids containing genetic material	Vector genome in the FT 2.5×10^{11} 2×10^{11}	Loading vg titer	• 300 mL Clarified H Dynamic Bind	ding	Maximum Binding	
containing genetic material	2.5×10 ¹¹ 2×10 ¹¹ 4×10 ¹⁰	• •	Dynamic Bind Capacity	ding	Maximum Binding Capacity	
containing genetic material	2.5×10 ¹¹ 2×10^{11} 4×10^{10} 3×10^{10} 2×10^{10}	• •	Dynamic Bine Capacity 5.5E+13 vg / mL-	ding resin	Maximum Binding Capacity 2.9E+13 vg / mL-resin	
containing genetic material BioRender.com	2.5×10 ¹¹ 2×10 ¹¹ 4×10 ¹⁰	Loading vg titer	Dynamic Bind Capacity	ding resin	Maximum Binding Capacity	
containing	$\begin{array}{c} 2.5 \times 10^{11} \\ 2 \times 10^{11} \\ 4 \times 10^{10} \\ 3 \times 10^{10} \\ 2 \times 10^{10} \\ 1 \times 10^{10} \\ 0 \\ 0 \\ 60 \\ 120 \\ 180 \end{array}$	Loading vg titer	Dynamic Bine Capacity 5.5E+13 vg / mL-	ding resin 2 resin 2	Maximum Binding Capacity 2.9E+13 vg / mL-resin	
containing genetic material h BioRender.com cy Purification actor in purification Id.While higher and purity -	$\begin{array}{c} 2.5 \times 10^{11} \\ 2 \times 10^{11} \\ 4 \times 10^{10} \\ 3 \times 10^{10} \\ 2 \times 10^{10} \\ 1 \times 10^{10} \\ 0 \\ 60 \\ 120 \\ 180 \\ FT (mL) \end{array}$ Capsid in the FT $\begin{array}{c} 5 \times 10^{11} \\ 4 \times 10^{11} \\ 8 \times 10^{10} \end{array}$	Loading vg titer 10% Breakthrough	Dynamic Bing Capacity 5.5E+13 vg / mL- 7.7E+13 cp / mL- 10% breakthroug 0 At the maximum b column, the eluted full capsids (by AU 0 When the AAV loa	ding resin 2 resin 2 h oinding capac AAV contain C, SEC-MAL ad exceeds t	An	
containing genetic material BioRender.com by Purification ctor in purification d.While higher nd purity - ity column, which	$ \begin{array}{c} 2.5 \times 10^{11} \\ 2 \times 10^{11} \\ 4 \times 10^{10} \\ 3 \times 10^{10} \\ 2 \times 10^{10} \\ 1 \times 10^{10} \\ 0 \\ 6 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	Loading vg titer 10% Breakthrough	Dynamic Bing Capacity 5.5E+13 vg / mL- 7.7E+13 cp / mL- 10% breakthroug • At the maximum b column, the eluted full capsids (by AU • When the AAV loa capacity, a greater containing capsids	ding resin resin resin h dinding capac AAV contain C, SEC-MAL ad exceeds the proportion of are found in zing the loadi	Aaximum Binding Capacity 2.9E+13 vg / mL-resin 5.8E+13 cp / mL-resin 1.3 x overload tity of the affinity ns approximately 50% .). he column's binding of vector genome (vg)- the flow-through. ing density is essential t	
containing genetic material bioRender.com Cy Purification ctor in purification d. While higher nd purity - ity column, which	$\frac{2.5 \times 10^{11}}{4 \times 10^{10}}$	Loading vg titer Loading vg titer 10% Breakthrough Loading cp titer 10% Breakthough	Dynamic Bing Capacity 5.5E+13 vg / mL- 7.7E+13 cp / mL- 10% breakthroug • At the maximum B column, the eluted full capsids (by AU • When the AAV loa capacity, a greater containing capsids • Therefore, optimiz improving the full elution.	ding resin resin resin h dinding capac AAV contain C, SEC-MAL ad exceeds the proportion of are found in zing the loadi	Aaximum Binding Capacity 2.9E+13 vg / mL-resin 5.8E+13 cp / mL-resin 1.3 x overload tity of the affinity ns approximately 50% .). he column's binding of vector genome (vg)- the flow-through. ing density is essential to nt in the affinity-purified	
senetic material BioRender.com Corr in purification d. While higher ad purity - ty column, which	$\frac{2.5 \times 10^{11}}{4 \times 10^{10}}$ $\frac{4 \times 10^{10}}{3 \times 10^{10}}$ $\frac{2 \times 10^{10}}{1 \times 10^{10}}$ $\frac{2 \times 10^{10}}{4 \times 10^{10}}$ $\frac{4 \times 10^{11}}{4 \times 10^{11}}$ $\frac{5 \times 10^{11}}{4 \times 10^{10}}$ $\frac{5 \times 10^{11}}{4 \times 10^{10}}$ $\frac{6 \times 10^{10}}{4 \times 10^{10}}$	 Loading vg titer 10% Breakthrough 240 300 Loading cp titer 10% Breakthough 0% Breakthough 0% Dreakthough 	Dynamic Bing Capacity 5.5E+13 vg / mL- 7.7E+13 cp / mL- 10% breakthroug • At the maximum B column, the eluted full capsids (by AU • When the AAV loa capacity, a greater containing capsids • Therefore, optimiz improving the full elution.	ding resin 2 resin 2 h oinding capac AAV contain C, SEC-MAL ad exceeds th proportion of are found in zing the loadi capsid conte	Maximum Binding Capacity 2.9E+13 vg / mL-resin 5.8E+13 cp / mL-resin 1.3 x overload tity of the affinity ns approximately 50% .). he column's binding of vector genome (vg)- the flow-through. ing density is essential to nt in the affinity-purified	
containing genetic material th BioRender.com	$\frac{2.5 \times 10^{11}}{4 \times 10^{10}}$	Loading vg titer 10% Breakthrough Loading cp titer Loading cp titer 10% Breakthough 0% Breakthough	Dynamic Bing Capacity 5.5E+13 vg / mL- 7.7E+13 cp / mL- 10% breakthroug • At the maximum b column, the eluted full capsids (by AU • When the AAV loa capacity, a greater containing capsids • Therefore, optimiz improving the full elution.	ding resin 2 resin 2 resin 2 resin 2 h oinding capac AAV contain C, SEC-MAL ad exceeds th proportion of are found in zing the loadi capsid conte	Aximum Binding Capacity 2.9E+13 vg / mL-resin 5.8E+13 cp / mL-resin 1.3 x overload tity of the affinity ns approximately 50% .). he column's binding of vector genome (vg)- the flow-through. ing density is essential t int in the affinity-purified	

Presented at ASGCT 2025


Salt Optimization for Full capsid enrichment

Critical Quality Attributes

Capsid Stability Assessment

The optimized formulation provided improved stability of AAVs, as demonstrated by selected critical quality attributes (CQAs) shown below

Conclusion

- chromatography.
- using CIMmultus QA HR along with optimization of salt condition.

Acknowledgments

We would like to acknowledge colleagues from Vector Process Development, Research, Vector Development and Production, and Analytical Development at Sangamo Therapeutic, Inc. for their support.

Poster #1464

• Capture eluate (~ 50% full capsid by SEC-MAL, A260/A280: I. I 8) loaded onto CIMmultus QA HR

CQAs	Assay	STAC-BBB
Durity	SDS-PAGE	> 99%
Purity	SEC	< 1% Aggregation
Empty / Full capsid	AUC / SEC-MALS	> 70% Full capsid
Potency	ZFR Expression & Target Gene Repression	≥ Shake flask material

• We evaluated the performance of the Capture and Polish columns using STAC-BBB.

• The affinity resin showed different binding preferences for full versus empty capsids under overload conditions. Therefore, optimizing the loading density is recommended to maximize full capsid recovery during affinity

• Polishing column screening and full capsid enrichment were evaluated, achieving over 70% full capsid content

• The identified formulation meets the target product profile and supports the desired stability budget