

Preclinical Development of an AAV-Delivered Zinc Finger Transcriptional Repressor Targeting the Prion Gene as a Novel Epigenetic Gene Therapy for Prion Disease

**Toufan Parman**<sup>1</sup>, Annemarie Ledeboer<sup>1</sup>, Marina Falaleeva<sup>1</sup>, Jing Hu<sup>1</sup>, Madelena Nguyen<sup>1</sup>, Shih-Wei Chou<sup>1</sup>, Yonghua Pan<sup>1</sup>, Kimberly Marlen<sup>1</sup>, David Ojala<sup>1</sup>, Matthew Tiffany<sup>1</sup>, Daniel Chung<sup>1</sup>, Mihika Jalan<sup>1</sup>, Patrick Dunn<sup>1</sup>, Lei Zhang<sup>1</sup>, Jason Eshleman<sup>1</sup>, Alaric Falcon<sup>1</sup>, Carolyn Gasper<sup>1</sup>, Meredith A Pokatayev<sup>2</sup>, Michael Howard<sup>2</sup>, Kenney Lenz<sup>2</sup>, Kenia Guzman<sup>2</sup>, Nikita Kamath<sup>2</sup>, Alissa Coffey<sup>2</sup>, Mary Lanier<sup>3</sup>, Thanh-Thuy-Tran<sup>3</sup>, Miranda Johnson<sup>3</sup>, Cody Zurhellen<sup>4</sup>, Yanmei Lu<sup>1</sup>, Amy M Pooler<sup>1</sup>, Eric Vallabh Minikel<sup>2</sup>, Sonia M Vallabh<sup>2</sup>, Bryan Zeitler<sup>1</sup>, Kathleen Meyer<sup>1</sup>

<sup>1</sup> Sangamo Therapeutics Inc., <sup>2</sup> Broad Institute of MIT and Harvard, <sup>3</sup>SRI International, <sup>4</sup>Neuroscience Associates

Some illustrations were created with BioRender.com

Presented at the ASGCT 28th Annual Meeting

## I am a full-time employee of Sangamo Therapeutics



### **Prion disease**



A rapid and fatal neurodegenerative disorder with high unmet medical need



**Target:** Entire brain - cortical and deep regions



**Symptoms:** Dementia, memory loss, movement disorder, cognitive decline  $\rightarrow$  death



**Cause:** Conversion of normal to misfolded prion protein



**Life Expectancy:** 5 months from diagnosis



**Prevalence:** at least 1,300 new cases / year in US and Europe



Treatment: None

Given the lack of life-saving treatments there is an urgent need to develop novel therapeutics for the treatment of prion disease

Image modified from: Medd MM and Cao Q (2004) Perspectives on CRISPR Genome Editing to Prevent Prion Diseases in High-Risk Individuals. Biomedicines, 12(8): 1725; https://doi.org/10.3390/biomedicines12081725



Sangamo utilizes zinc finger proteins with blood-brain barrier crossing AAV to advance a next-generation neurology genomic medicine



#### Potent Zinc Finger Cargo

Level of potency is precisely customizable to the indication being targeted



#### Small Size. Easily Packaged.

Zinc fingers can be easily packaged into viral vectors



#### Versatility and Exquisite Specificity

We believe any gene in the genome is targetable for up- or down-regulation



#### **Powerful AAV Delivery Platform**

Widespread zinc-finger 'cargo' delivery – via both intravenous AND intrathecal delivery



#### All Human Derived

Potentially avoids issues with immunogenicity



### Industry Leading CNS Tropism

Robust penetration of the blood-brain barrier and widespread brain distribution in NHPs



### STAC-BBB-delivered prion-lowering zinc finger protein as a potential therapy for prion disease





Ę

## Nonclinical development strategy for ST-506: a potential therapy for prion disease



ZFRs targeting human/nonhuman primate (NHP) PRNP (hZFRs)







Rocky Mountain Laboratory (RML) inoculated mice are the gold standard model of prion disease





 $\bigcirc$  Onset of clinical symptoms:

 $\bigcirc$  Median survival:

~160 dpi

120 dpi

## ZFRs are potent and selective repressors of gene expression



## Well-tolerated surrogate ZFR dose-dependently represses prion gene and protein in wild-type mouse brain and CSF







## Surrogate ZFR dose-dependently represses *Prnp* expression in only neurons within wild-type mouse brain



Neuronal repression in both cortical and deep regions of the brain

# Surrogate ZFR-mediated PrP repression is durable in the mouse brain for at least ~17 months



ZFR-mediated prion protein repression was well-tolerated and lasted for the duration of the study: ~17 month longest ever reported





## Dose-dependent repression of PrP in brain and CSF of RML mouse model of prion disease









Surrogate ZFR mediates profound extension of life, and delay in body weight loss in post-symptomatically treated RML mouse model of prion disease



# 4-week dose range-finding study following a single intravenous administration of ST-506 to cynomolgus monkeys





### Single IV infusion of ST-506 shows dose-dependent PRNP repression in NHP brain



Srain-wide distribution of ZFR

Significant repression in both cortical and deep regions

✓ Repression ranged from 13% to 45% depending on dose and region

\*\* = p < 0.01 \*\*\* = p < 0.001 \*\*\*\* = p < 0.0001 \*\*\*\* = p < 0.0001



# ST-506 achieves *PRNP* repression levels in NHPs needed for extension of survival as seen in prion disease mouse model



For mice: samples were collected 168 days post administration to wild type mice. N=7-10 per group. Brainstem and cortex shown For NHPs: Mean values of multiple punches from pons and middle frontal gyrus shown.

ST-506 was safe at both dose levels with no adverse pathology findings in any tissue

#### In-life observations:

- Mortality/morbidity
- Clinical signs, including behavior assessment
- Food consumption and Body weight
- Clinical pathology
  - Hematology
  - Chemistry
  - Coagulation

#### **Terminal observations**

- Organ weights
- Gross necropsy
- Histopathology of CNS, PNS, and Non-CNS Tissues:
  - Brain
  - DRGs (4 levels)
  - Spinal cord (3 levles)
  - Trigeminal ganglia
  - Sciatic nerve
  - Adrenal gland
  - Epididymis

– Kidney

– Heart

- Intestine
- Liver
- Lung
- Lymph node
- Ovary

- Pancreas
- Skeletal muscle
- Spleen
- Stomach
- Testes
- Thymus
- Uterus



✓ All in-life observations were normal

## No macroscopic & microscopic finding

All terminal observations were normal
No ST-506 related findings





## Summary and conclusions

# **ST-506** shows great promise for the potential treatment of prion disease

- Profound, dose-dependent survival benefit in a mouse disease model when dosed post-symptomatically
- Prion repression sustained for at least 17 months in wild-type mice and well-tolerated
- ST-506 achieves brain-wide *PRNP* repression levels in nonhuman primate needed for extension of survival
- ST-506 was safe in nonhuman primates at the highest dose tested: IE+I4 vg/kg given IV

Anticipate start of ST-506 clinical study for the treatment of prion disease in 2026

#### Chou et al., 2025.

Zinc Finger Repressors mediate widespread PRNP lowering in the nonhuman primate brain and profoundly extend survival in prion disease mice









# Thank You









### **Toufan Parman, PhD, DABT** Senior Director of Nonclinical Safety Evaluation Email: tparman@sangamo.com